ارایه مدل بهینه ریسک اعتباری فرایند تامین مالی جمعی با استفاده از شبکه عصبی پرسپترون چندلایه (MLP)
Authors
Abstract:
هدف مطالعه حاضر، پیشبینی و ارایه مدل ریسک اعتباری جهت سرمایهپذیران تأمین مالی جمعی مبتنی بر بدهی است. با توجه به پیچیدگی ارزیابی ریسک، بهترین معماری شبکه عصبی الگوریتم پرسپترون چند لایه برای شبیهسازی انتخاب شد. جامعه آماری این پژوهش، اطلاعات مالی پرونده اعتباری/تسهیلاتی کلیه مشتریان (506 مورد) یکی از بانکهای کشور مربوط به سال 98-97 است. به منظور معناداری رابطه شاخصهای استخراج شده از نمونه با متغیر خروجی مدل (نکول و عدم نکول) اعضای نمونه توسط آزمون رگرسیون سنجیده شد. بدین ترتیب تعداد13شاخص بهعنوان بردار ورودی شبکه عصبی با سه لایه پنهان در دو گروه نکول و عدم نکول وارد مدل گردید. بر اساس نتایج شبیهسازی، مدل پیشنهادی توانست با خطای کمتر و دقت پیشبینی بالاتر (94.1) وزن هریک از شاخصهای ورودی به شبکه را محاسبه کند. همچنین ضریب تعیین برای دادههای آموزشی برابر (0.88)، آزمایش برابر (0.94) و ارزیابی برابر (0.84) بدست آمد که نشان دهنده توانایی برازش بالای مدل شبکه عصبی پیشنهادی است. یافتههای پژوهش نشان داد، از میان شاخصهای ورودی، درآمدخالص، با وزنی معادل 0.163، میانگین حساب جاری با وزنی معادل 0.123 به مراتب از اهمیت بیشتر و شاخص سابقه تحصیلات با وزنی معادل 0.053 از اهمیت کمتری در گروه عدم نکول شده برخوردار است.
similar resources
ارائه مدلی برای انتخاب سبد بهینه سهام با استفاده از الگوریتم هوش جمعی سالپ و شبکههای عصبی پرسپترون چندلایه
ﻣﻬﻤﺘﺮﯾﻦ دﻏﺪﻏﻪ ﺳﺮﻣﺎﯾﻪﮔﺬاران، اﻓﺰاﯾﺶ ﻣﯿﺰان ﺳﻮد و ﮐﺎﻫﺶ رﯾﺴﮏ درﺑﻮرس ﺑﻮده و ﻫﻤﻮاره ﺑﻪ دﻧﺒﺎل راهکاری جهت ﺑﻬﺘﺮﯾﻦ ﭘﯿﺸﻨﻬﺎد در ﺧﺮﯾﺪ ﺳﻬﺎم هستند، تا ﺑﯿﺸﺘﺮﯾﻦ سود ﺳﺮﻣﺎﯾﻪﮔﺬاری را ﺑﺎﺷﺪ. در تحقیقات اﻧﺠﺎم ﺷﺪه مشاهده می شود که ﻣﺪل رﯾﺎﺿﯽ ﻣﯿﺎﻧﮕﯿﻦ وارﯾﺎﻧﺲ ﻣﺎرﮐﻮﯾﺘﺰ ﯾﮑﯽ از اﺻﻠﯽﺗﺮﯾﻦ راهکارها است اما ﺑﻬﺘﺮ اﺳﺖ ﻣﻌﯿﺎرﻫﺎیی همچون ﭼﻮﻟﮕﯽ با در نظر گرفتن ﭘﺘﺎﻧﺴﯿﻞ آینده ﺳﻬﺎم مورد بررسی قرار گیرد. در اﯾﻦ ﺗﺤﻘﯿﻖ از 20 ﺷﺮﮐﺖ اول از 50...
full textمدیریت ریسک اعتباری در بانک کشاورزی شهرستان ممسنی با استفاده از مدل شبکه عصبی
این مقاله با هدف شناسایی عوامل مؤثر بر ریسک اعتباری و ارائه مدلی جهت پیشبینی ریسک اعتباری و رتبهبندی مشتریان حقوقی متقاضی تسهیلات اعتباری بانک کشاورزی شهرستان ممسنی با استفاده از تکنیک شبکه عصبی انجام گرفته است. بدین منظور بررسیهای لازم بر روی اطلاعات مالی و غیرمالی مربوط به یک نمونه 205 تایی که به روش نمونهگیری خوشهای چندمرحلهای تصادفی از میان کشاورزان دریافتکننده وام در شهرستان ممسنی د...
full textارائه مدل ترکیبی شبکه های عصبی با بهره گیری از یادگیری جمعی به منظور ارزیابی ریسک اعتباری
Banking is a specific industry that deals with capital and risk for making profit. Credit risk as the most important risk, is an active research domain in financial risk management studies. In this paper a hybrid model for credit risk assessment which applies ensemble learning for credit granting decisions is designed. Combining clustering and classification techniques resulted in system improv...
full textپیش بینی بزرگای زلزله با استفاده از شبکه عصبی پرسپترون چندلایه
به دلیل نواقص موجود در روش های پیشین محاسبه بزرگای زلزله، شبکه عصبی به عنوان یک روش جدید برای این منظور آزمایش می گردد. در این مقاله نوعی شبکه عصبی با نام پرسپترون چندلایه برای پیش بینی بزرگای گشتاوری زلزله مورد استفاده قرار گرفته است. شبکه عصبی پرسپترون شامل سه لایه اصلی با نام های لایه ورودی، لایه پنهان و لایه خروجی است. ورودی های این شبکه شش متغیر مربوط به مکان و زمان وقوع زلزله و همچنین مشخ...
full textآموزش و اعتبارسنجی عملکرد شبکه های عصبی پرسپترون چندلایه با استفاده از بهینه سازی جاذبه ای
شبکه های عصبی مصنوعی پرسپترون چند لایه امروزه در حل بسیاری از مسئله های غیر خطی مورد توجه قرار گرفته است. برای آموزش شبکه های عصبی پرسپترون چند لایه، بروز رسانی وزن های سیناپسی و انتخاب ورودی های بایاس از اهمیت فراوانی برخوردار است. روش های بسیاری در آموزش این نوع شبکه ها به کار گرفته شده است. روش کاهش گرادیان یکی از این روش ها است، اما این روش با مشکل به دام افتادن در بهینه های محلی مواجه می ب...
15 صفحه اولMy Resources
Journal title
volume 11 issue 43
pages 271- 290
publication date 2020-06-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023